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One challenge for inferring causal relationships is that the observations from which probabilities are calcu-
lated are often uncertain. A patient’s medical record, for instance, has omissions, incorrect measurements
and outdated information so making assumptions such as that patients only take aspirin when explicitly
mentioned will lead to incorrect inferences about their risk of heart attack. More generally, the resulting
errors in estimating probabilities will lead to false discoveries or non-discoveries in causal inference.
Our solution is to assign less weight to uncertain values, so that conclusions like conditional indepen-
dence are weaker when based on error-prone measurements instead of reliable ones. We propose a
new approach based on second order probability distributions (SOPDs) and Bayesian updating to allow
observation-speci�c uncertainty levels that can be determined through background knowledge (e.g. device
error rates, logs) or experiment (multiple variable measurements). Here an observation’s impact is given by
a prior distribution that is updated with meta-information about the observation, resulting in a shift to the
distribution’s center (most likely value) and spread (degree of certainty).
This framework addresses uncertainty generally, but we focus here on how it can be used for discretization
and to improve causal inference. Discretization involves binning continuous variable measurements into
a collection of discrete states, which can be useful for reducing noise. For instance, blood glucose mea-
surements are often categorized into {normal, too-high, too-low}, where values in [��,���] are considered
normal. Rather than adopt this strict partition, which is often within a device’s margin of error and sel-
dom used in this way by patients and clinicians, we create “fuzzy” partitions with probability distributions.
Traditional and new discretization functions are shown below left. Below right is a set of corresponding
timeseries data with discrete variables c (carb-heavy meal) and e (high-level of exercise), and the continu-
ous variable g (blood glucose measurement). The traditional approach classi�es bold g values as normal.
Our approach maps each g value to the indicated probability of normalcy gn.
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We motivate the need to account for uncertainty with a simple example: does exercise affect glucose levels
in one time unit? We use an algorithm developed by Kleinberg that �nds the average difference a cause
makes to the probability of an effect by holding �xed other variables. Using traditional discretization, the
effect of e on gn in one time unit is:

P(gn|c,e)−P(gn|c,¬e) = 0/2− 0/2= 0. (�)

Here it seems that exercise does not regulate glucose, since values close to normal (���) following c∧ e are
categorized as abnormal and indistinguishable from the higher values following c∧¬e (��� and ���).
Instead, our approach uses the distributions to assign a probability of gn given the actual value of g. We
assign base weights to data values according to certainty in their observation, akin to adjusting sample data



base weights based on data representativeness and nonresponse. The effect of e on gn in one time unit is
then:

P(gn|c,e)−P(gn|c,¬e) =
0.50+ 0.50

1+ 1
−

0.02+ 0.001
1+ 1

=0.50− 0.01= 0.49. (�)

Now e correctly has a potentially signi�cant impact on g. The base weights (real-valued numbers ∈ [0,1],
as in equation (�)) hold more information than binary indicators (� or �, as in equation (�)) of whether an
event occurred. One could also account for uncertainty in c and e by similarly mapping raw values for meal
carbohydrate content and exercise intensity to probabilities.
To determine the base weight for events in general we maintain SOPDs and update them as new infor-
mation arrives. An SOPD represents belief (alternatively, uncertainty) in the �rst order probabilities that a
variable has a particular value. Thus we have an SOPD for each possible glucose value. One for g = 130 is
shown in �gure �, where the x-axis corresponds to probabilities that g = 130 indicates normal glucose, and
the y-axis to belief (in the form of a probability distribution) that the corresponding x-axis probability is the
true probability. The most likely value of the graph (mean of the SOPD) is low, re�ecting that a g = 130 is
usually considered high. However, if we know that for a particular reading the subject dropped his test strip
on the ground before inserting the sample into his glucometer, we can account for this contamination. As-
suming ground materials could lead to any blood glucose reading uniformly through their interaction with
the blood glucose meter, we represent the new information with the uniform data distribution.

Figure �: SOPD formulation for g=���

To form the posterior distribution we take the weighted sum
of the prior and data distributions, assigning weight to the
prior corresponding to how strongly we trust the new data.
If we know the blood glucose meter has high sensitivity to
contaminants, we would assign higher weight to the prior, be-
cause we cannot trust the data as much as data from a more
robust device. Supposing a con�dence of �.�, we form the
posterior distribution shown between the prior and data dis-
tributions in �gure �. The end result is a “weakening” of the
observation base weight via the �attening of the SOPD. Com-
pared with the prior, the posterior re�ects our higher uncer-
tainty via increased distribution spread and our stronger most
likely belief that the ��� reading could be normal by push-
ing the distribution center toward �.�, indifference between
a value being normal/abnormal.
In general, we call our procedure for updating base weights
adjustment, as the center and spread of data is shifted in response to meta-information. Adjustments to
the center are critical to causal inference accuracy, whereas adjustments to the spread re�ect inference
precision. Precision is important in belief updating (the propensity to change beliefs in response to new
information) and risk analysis (supplementing inferences with sensitivity analysis and con�dence intervals).
Beliefs formed from comprehensive, irrefutable evidence have smaller spread and therefore more resis-
tance to change than beliefs formed from speculatively extrapolating a handful of data points.
Our proposed approach delivers detailed uncertainty representations that result in more accurate causal
inference by representing beliefs with SOPDs, which can be manipulated through adjustments. We high-
lighted the problem of discretization and measurement error, but more general adjustments discussed in
the full paper will address incorrect, incomplete, and outdated data as well as an application of the approach
to actual diabetic physiological data. A key area for future work is automating information translation into
SOPDs and proving robustness against minor translation errors.


